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a b s t r a c t

This paper presents a structural model for an unloaded tyre, based on a three-

dimensional flexible ring on an elastic foundation. The ring represents the belt and the

elastic foundation represents the tyre sidewall. The model is valid up to 300 Hz and

includes a submodel of the wheel and the air cavity. This makes the model potentially

suitable for the prediction of structure-borne interior noise. Unlike most ring models,

which only consider in-plane modes, the presented model also predicts the modes that

involve torsion of the belt in circumferential direction. The parameterization of the

model, which does not require detailed knowledge of the tyre construction, is based on

the main geometrical properties of the tyre and a limited modal test. Comparison

between measured and calculated responses shows that the tyre–wheel model

describes the dynamic behaviour with acceptable accuracy. Since the model is physical,

it can be applied to describe other operational conditions such as loading and rotation.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Road traffic noise

The steady increase of road traffic density over the past decades caused an increasing noise burden for most inhabitants
of industrialized areas [1]. In the European Union, it has been estimated that approximately 80 million people are exposed
to unacceptably high traffic noise levels [2]. In addition, this type of noise is by far the most pervasive of the many noise
sources that affects people [3]. The two main vehicle exterior noise sources are drivetrain noise and tyre/road noise.
Despite the complexity of the involved noise sources, significant reductions of the drivetrain noise have been achieved,
encouraged by the progressive vehicle noise legislation which was introduced during the 1970s in Europe. However, no
improvements in tyre/road noise can be observed over the last decades [4]. Furthermore, the tendency towards wider tyres
and larger wheel diameters adversely affects the tyre/road noise. As a result, the tyre/road interaction is currently the most
important source of vehicle noise for driving speeds above 40 km/h [5]. Nowadays, the NVH (noise, vibration and
harshness) performance of a vehicle has become a distinctive marketing and design criterion for vehicle manufacturers.
Especially on rough road surfaces, the tyre/road interaction contributes significantly to the perceived vehicle interior noise
and vibration levels in certain frequency ranges [6].

Based on their nature, tyre/road noise generating and amplification phenomena are divided in two groups: vibrational
and aerodynamical phenomena [5].
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The vibrational phenomena consider the structural vibrations of the tyre which are caused by the interactions between
tyre and road. Different types of structural waves can be identified [7,8]: bending, longitudinal and shear waves. The
exterior sound radiation due to the structural vibrations is significant below 1500 Hz and is found to be mainly caused by
bending vibrations [9]. At frequencies below 500 Hz the tyre shows a distinct modal behaviour; this means that structural
waves at certain frequencies interfere constructively. The damping of the tyre rubber increases with increasing frequency;
thus causing the structural waves to decay rapidly in amplitude away from the excitation area. At for instance 3200 Hz, the
response level drops by approximately 40 dB by half-way around the belt [10]. Pinnington and Briscoe [8] showed that no
modal behaviour around the belt appears above 500 Hz, which means that the belt can be approximated as an infinite
beam in the circumferential direction. In addition to the directly radiated exterior noise from a vibrating tyre, tyre
vibrations are also transmitted through the spindle and suspension towards the vehicle. These vibrations then cause noise
radiation in the vehicle interior. Measurements show that the interior noise below 400 Hz correlates very well to the forces
measured at the spindle [11]. Moreover, the structure borne noise contribution dominates the interior noise below 500 Hz
[6,12]. Besides the structural resonances of the tyre structure, acoustic resonances appear in the air cavity. The first cavity
resonance for an unloaded tyre appears in the frequency range between 200 and 250 Hz. Sakata et al. [11] revealed that the
acoustic cavity resonance contributes significantly to the interior tyre/road noise.

The aerodynamical phenomena can be described in general as air displacement mechanisms. The interaction between
tyre and road causes pressure variations in the surrounding air. Similar to the structural vibrations, certain amplification
and reduction effects appear which either amplify or reduce the noise propagation. The frequency range for this air-borne
exterior noise is typically from 500 up to 3000 Hz [5]. In this paper, the aerodynamical phenomena will not be considered.
1.2. Structural tyre models

The increasing awareness for tyre/road noise and the resulting tyre/road noise reduction targets have increased the need
for more accurate simulation tools. Due to the complexity of the tyre structure and the various effects that contribute in the
generation of noise, several specific tyre models have been developed. For instance, the numerical models used for the
design of low noise tyres are in general less suited for the development of low noise road surfaces. Moreover, a further
distinction has to be made between models that are used in full vehicle simulations to predict the interior noise and
models that predict the noise radiation from the tyre towards the environment. A wide range of tyre models are available,
ranging from physical to statistical models [13]. In this paragraph a short overview of the available physical structural tyre
models is given. Analytical models have been used since a long time to describe the dynamic behaviour of tyres. Both ring
and plate models appear in literature. Ring models are mainly used to describe the in-plane dynamics and are based on a
flexible ring with an elastic foundation, representing the tyre sidewalls [14,15]. More complex ring models use a
viscoelastic multi-layered ring and include the air cavity dynamics in the elastic foundation [16]. However, due to the
considerable simplifications, ring models cannot describe cross-sectional bending modes which appear at frequencies
above 300 Hz. Plate models neglect the curvature of the tyre, which is a valid assumption for higher frequencies (above
400 Hz). Additionally, the internal structure gains importance due to more localized deformations at higher frequencies
[7,17,18]. The tread and sidewalls are modelled as a thin, flat orthotropic plate, with in-plane tension.

A large number of tyre models are based on finite element methods. Those models are most appropriate for low
frequencies (below 400 Hz) where the number of elements is still acceptable. Certain models describe the tyre structure
with all its components in detail, which leads to large computation times [19,20]. Recently, Brinkmeier et al. [21] developed
a finite element model to simulate the dynamic behaviour of a stationary rolling tyre in ground contact by using an
arbitrary Lagrange–Eulerian formulation. In order to reduce the model size, a more common approach is to introduce
simplifications in the tyre model. For instance, the tyre cross-section can be approximated by a single layer of shell
elements which can have a variable thickness [22,23]. A similar model was proposed by Lopez et al. [24] to extract the
eigenfrequencies and eigenvectors of a loaded tyre. Subsequently, the obtained modal base is transformed to determine the
response of the rotating tyre in a fixed (Eulerian) reference frame. An alternative modelling approach is to consider the tyre
as a waveguide [25]. Wave solutions in such structures can be found by a method called the waveguide finite element
method. This method uses a finite element approach on the cross-section of the waveguide to model the vibro-acoustic
response as a set of linear coupled one-dimensional wave equations. In general, simplifications made in analytical or
numerical tyre models reduce the computational effort; however, the models become less capable in predicting the
influence of a small design change.

The structural finite element tyre model presented in this paper is based on a three-dimensional flexible ring on an
elastic foundation. The ring represents the belt and the elastic foundation represents the tyre sidewall. The model is valid
up to 300 Hz and includes a model of the wheel and the air cavity. This makes the model potentially suitable for the
prediction of structure borne interior noise. Unlike most ring models which consider only in-plane motion, the presented
model also predicts modes that involve torsion of the belt in circumferential direction. The parameterization is based on
the main geometrical properties of the tyre and a limited modal test. The model in this paper is validated on a tyre (size
205/55R16) without tread pattern, which is mounted on a steel wheel.

Although the model only provides response of points on the treadband, it can also be used to predict the structure-
borne noise radiation below 300 Hz. In this frequency range, the noise radiation is mainly dominated by the tread area [6].
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Driving on roads with cobblestones, transverse joints, railroad crossings, etc. are situations in which the exterior tyre noise
is dominated by structure-borne noise radiation below 500 Hz.

2. Analytical ring model

This chapter derives the equations of motion for a flexible ring on an elastic foundation. The dynamic behaviour of a tyre
can be approximated by this system in which the flexible ring represents the belt and tread layer; the elastic foundation
represents the tyre sidewall. The effect of the circumferential tension in the ring due to the internal pressure is taken into
account in the equations of motion. Subsequently, an expression for the natural frequencies is derived. This expression will
be used in Section 3 to calculate the tyre sidewall stiffness out of the measured tyre natural frequencies.

2.1. Equations of motion

Fig. 1 shows a drawing of the flexible ring on elastic foundation. The displacements u3 and uy are the radial and
tangential displacement of the neutral surface, respectively. The neutral surface is referred to as the surface where the
stresses are of a membrane type; bending stresses are zero in the neutral surface. All displacements are considered to be
constant over the belt width. The radius, thickness, width and density of the ring are R, h, b and r, respectively. The inner
surface of the ring is subjected to a pressure p (Pa). k3 and ky are the stiffness values per unit area ðN m�3Þ of the distributed
radial and tangential linear springs. q3 and qy are the distributed loads per unit area. The equations of motion for the ring
are [14]
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D and K represent the bending and membrane stiffness, respectively. These stiffnesses are expressed as a function of
Young’s modulus E and the ring thickness h:

D ¼ Eh3=12 (3)

K ¼ Eh (4)

The internal pressure on the ring causes a circumferential pretension in the ring. Nr
yy represents the pretension force

resultant in the ring per unit width of the ring (see Appendix A):

Nr
yy �

pR

1þ k3R2=ðhEÞ
(5)

For the application considered in this paper, the circumferential pretension can be further approximated by pR.
Four assumptions were made to obtain the equations of motion (1) and (2). Firstly, transverse shear deflections ð�y3Þ of

the ring are neglected. Secondly, all displacements are considered to be constant over the belt width (y-direction).
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Fig. 1. Flexible ring on elastic foundation with internal pressure.
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The stresses and deformations in the y-direction are assumed to be zero (�yy ¼ 0; �yy ¼ 0). Thus, the effect of Poisson’s
constant is neglected ðn ¼ 0Þ. Thirdly, the stress component acting in the normal direction to the neutral surface is
neglected. At last, the Love simplifications for thin shells are applied [26]. This implies that the shell in-plane
displacements vary linearly through the shell thickness and that the out-of-plane deformation is constant through the shell
thickness.
2.2. Natural frequencies

For the eigenvalue analysis, the distributed loads q3 and qy are set equal to zero. At a natural frequency, each point of the
ring is moving harmonically which leads to the following expression for the radial and tangential displacement:

u3ðy; tÞ ¼ An expðjðnyþontÞÞ (6)

uyðy; tÞ ¼ Bn expðjðnyþontÞÞ (7)

n is an integer number, representing the circumferential wavenumber. The circumferential orientation of the modes of a
perfectly axisymmetric ring is not fixed with respect to the ring. The orientation of a mode is purely dependent on the
position of the external force that excites that mode. The proposed displacements in Eqs. (6) and (7) do not consider
variations over the width of the ring. This presumption will limit the set of modes that result from this eigenvalue analysis.
Substitution of Eqs. (6) and (7) into the equations of motion and elimination of the time dependent portion of the solution
leads to two new equations that can be written in matrix form:
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The characteristic equation is obtained by setting the determinant of the above derived coefficient matrix to zero:
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For each value of n, a pair of eigenvalues is found as the roots of Eq. (13). The obtained eigenvalues are the square of the
natural frequencies:
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The mode shape corresponding to each natural frequency can be calculated by substituting Eqs. (16) and (17) into (8) and
solving this matrix equation for An and Bn. The amplitude ratio of radial and tangential displacement of the mode shape is
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derived from one of the two equations of (8)
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Eq. (18) shows that for values of n41, the radial component An is dominant for the eigenfrequencies on;1. For the
eigenfrequencies on;2, the tangential component Bn is dominant. For values n � 1, no general conclusion about the nature
of the mode shape can be drawn from Eq. (18). At the eigenfrequency o0;1, the tangential displacement is uniform along
the circumference and there is no radial displacement. However, at o0;2, the radial displacement is uniform along the
circumference and there is no tangential displacement. This mode is referred to as the breathing mode of the ring. Some of
the modes for n � 1 are discussed more in detail in Section 2.4.

2.3. Tyre mode naming convention

Fig. 2 explains the naming convention used for the structural tyre mode shapes. An unambiguous naming convention
for the modes of an unloaded tyre was proposed by Wheeler et al. [27]. This convention uses two integer indices which
describe the bending order of the belt package in the two directions. The format of the notation is ðn; aÞ. The first index n

represents the number of circumferential bending wavelengths of the belt. The second index a represents the number of
half-wavelengths in the axial direction of the belt at a circumferential location where the shape is at an extreme radial
displacement. The above described convention is ambiguous for some of the modes in which the belt translates or rotates
as a rigid structure. For those modes, an additional label—such as: lateral, pitch, torsion—is added to indicate the rigid
body motion of the belt.

2.4. Rigid belt modes

The first modes of a flexible ring on elastic foundation are modes in which the ring mainly translates or rotates as a rigid
structure. Three of those modes, which are shown in Fig. 3, will be used to calculate the sidewall stiffness of the presented
tyre model. Therefore, an expression for the natural frequency is derived for those three modes.
a = 0 a = 1 a = 2

n = 1 n = 3n = 0 n = 2

Fig. 2. Naming convention for tyre structural modes ðn; aÞ. n: circumferential index; a: belt cross-sectional index.
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Fig. 3. Rigid ring modes: (a) torsional mode, (b) (1,0) mode and (c) axial mode.
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2.4.1. Torsional mode

At the torsional resonance, the ring rotates as a rigid structure around the lateral axis (Fig. 3a). The natural frequency of
this mode is derived from Eq. (16) by setting n ¼ 0:
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�
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An alternative way to calculate the natural frequency of the torsion mode is to consider the system as a single degree of
freedom spring–mass system. The tangential elastic foundation acts as a rotational stiffness and the rigid ring acts as a
rotational inertia.

2.4.2. The (1,0) mode

At this resonance, the ring translates as an almost perfectly rigid structure in the plane of the radial and tangential
stiffnesses (Fig. 3b). The natural frequency of this mode is derived from Eq. (16) by setting n ¼ 1:
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When k3 ¼ ky, Eq. (20) simplifies to

o2
ð1;0Þ ¼

k3 þ ky
2rh

(21)

This corresponds to the case in which the ring translates as a perfectly rigid structure. When k3aky there will be a slight
deformation of the ring at the (1,0) mode and thus, the bending and membrane stiffness of the ring (D and K) influence the
resonance frequency.

2.4.3. Axial mode

At the axial resonance, the ring translates as a rigid structure along the lateral axis (Fig. 3c). The natural frequency of this
mode cannot be derived from Eq. (16) or (17) because the lateral motion is not included in the equations of motion.
However, the system can be considered as a single degree of freedom spring–mass system. The axial elastic foundation acts
as stiffness and the rigid ring acts as mass. ka is the stiffness values per unit area ðN m�3Þ of the distributed axial linear
sidewall spring:

o2
axial ¼

ka

rh
(22)

3. Development of the structural tyre model

This section describes the finite element based structural tyre model of an unloaded tyre, clamped at the wheel spindle.
The model is applied to a smooth tyre of size 205/55R16. The model is based on a three-dimensional flexible ring on an
elastic foundation. The ring represents the belt and the elastic foundation represents the tyre sidewall. The model, which is
implemented in ABAQUS, is valid up to 300 Hz and includes a submodel of the wheel and the air cavity.

3.1. Wheel submodel

The dynamic interaction between tyre and wheel has an effect on the vehicle NVH. Different wheels can produce
perceptible differences in vehicle interior noise. In the frequency range 200–350 Hz, differences in interior sound pressure
level up to 5 dB were found between a steel wheel and an aluminium wheel [28]. Consequently, the dynamic behaviour of
the wheel should be included in the tyre model. In general, the first resonance of a steel wheel (range 150–200 Hz) is much
lower compared to an aluminium wheel of the same size (range 300–350 Hz) [27]. As a consequence, most tyre models for
interior noise simulations do not include the wheel dynamics when an aluminium wheel is used. In the presented model, a
steel wheel with rim diameter 16 in is used. Fig. 4a shows the finite element model of the wheel. Table 1 lists the
parameters of the wheel model. The model does not include a damping definition. The geometry of the wheel is modelled
in detail because the flexibility of rim and disk are highly influenced by their complex shape. An attempt was made to use a
geometrically simplified wheel model; however, the dynamic behaviour could not be accurately described. An eigenvalue
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1st rim bending mode Rim pitch mode
166.8Hz 209.5Hz

Rim axial mode
368.3Hz

2nd rim bending mode
454.4Hz

rimdisk

Fig. 4. (a) Finite element model of the steel wheel. (b) Mode shape and natural frequency of the first four calculated wheel resonances.

Table 1
Parameters of the steel wheel model.

Parameter Description Value

trim Plate thickness of rim 2 mm

tdisk Plate thickness of disk 3.3 mm

E Elastic modulus of steel 210� 109 N m�2

n Poisson’s ratio of steel 0.3

r Density of steel 7800 kg m�3

mwheel Total mass of the wheel 8:34 kg

Table 2
Comparison between calculated and measured clamped wheel resonance frequencies.

Wheel mode FEM model Experimental modal test

Freq. (Hz) Freq. (Hz) Mod. damping (%)

1st bending 166.8 167.5 0.09

Pitch 209.5 205.5 0.10

Axial 368.3 393.2 0.35

2nd bending 454.4 440.7 0.14

P. Kindt et al. / Journal of Sound and Vibration 326 (2009) 852–869858
analysis was performed on the wheel model, clamped at the spindle. Fig. 4b shows the first four calculated wheel modes.
Table 2 makes a comparison between the results from the finite element calculation and an experimental modal analysis.
This comparison shows that the wheel model is sufficiently accurate in the frequency range of interest. The total mass of
the wheel model also corresponds to the measured total mass. This total mass is of importance when the tyre model is used
in a full vehicle model in which the wheel mass contributes to the unsprung mass of the vehicle suspension.
3.2. Treadband ring submodel

A radial tyre is composed of radial plies (carcass) that are enclosed by a steel reinforced belt and tread layer. Due to the
orientation of the rubberized plies and the steel wires in the belt, the tyre treadband exhibits orthotropic behaviour. The
circumferential stiffness of the treadband is generally higher than the cross-sectional stiffness. In the presented tyre model,
the treadband is modelled as an isotropic three-dimensional ring. Despite this drastic simplification, the tyre model
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Table 3
Parameters of the treadband ring model.

Parameter Description Value

Rout Tyre outer radius 0.316 m

h Treadband thickness 14.1 mm

b Treadband width 0.185 m

E0 Elastic storage modulus 4:5� 108 N m�2

Z Loss factor 0.15

n Poisson’s ratio 0.45

r Density 1452 kg m�3

P. Kindt et al. / Journal of Sound and Vibration 326 (2009) 852–869 859
exhibits acceptable accuracy in the frequency range of interest, as will be shown in the results and validation section of this
paper. The assumption of isotropy is reasonable for the two types of modes the model describes.

As a general engineering approach, energy dissipation in a structure is approximated by a mathematical model.
However, for complex structures such as tyres, it is not obvious which damping model is most appropriate. Geng et al. [29]
showed that the commonly used simplification of proportional viscous damping does not provide an adequate description
of the physical energy dissipation in tyres. A more general viscous damping distribution is needed, which results in a more
complex identification of the damping model.

The nonlinear static material behaviour of the ring is described by the Neo-Hookean hyperelastic material model. This
model is applicable for incompressible and nearly incompressible materials and is commonly used when no accurate
material data is available. Since energy dissipation in rubberlike materials has a hysteretic character, their dynamic
characteristics are often expressed as a complex dynamic shear modulus G� and complex Young’s modulus E�. The complex
Poisson’s ratio n� defines the relation between the complex dynamic shear and Young’s modulus [30]:

E� ¼ E0 þ jE00 ¼ 2ð1þ n�ÞG� (23)

The dynamic moduli from viscoelastic materials are found to be strongly dependent on frequency, temperature and
vibration amplitude. The imaginary part of Poisson’s ratio is small compared to the real part and therefore can be neglected
[31]. Thus, the viscoelastic material is dynamically unambiguously characterized by the real Poisson’s ratio and the
complex Young’s modulus. The real part E0 is referred to as the storage modulus, whereas the imaginary part E00 is referred
to as the loss modulus. The damping can be expressed by the ratio between imaginary and real part of the complex Young’s
modulus, which is referred to as the loss factor:

Z ¼ E00

E0
(24)

In this tyre model, the material properties of the treadband are considered to be frequency independent. This corresponds
to proportional hysteretic damping and is a widely used assumption for structure-borne sound applications in the
frequency range of interest. This material model is only valid for steady-state harmonic vibrations since it can lead to non-
causal transient solutions. The values for the loss factor and Poisson’s ratio are obtained from literature [8,10] and have
proven to be a good assumption. The elastic storage modulus is tuned by adjusting its value in order to reduce the error on
the predicted natural frequencies. A sensitivity analysis showed that the modes with a circumferential index no3 are
nearly insensitive to the elastic storage modulus.

The parameters of the ring are listed in Table 3. The ring is discretized in the finite element model by 4-node shell
elements (ABAQUS S4R elements). The elements allow transverse shear deformation and account for finite membrane
strains and arbitrarily large rotations. Ninety elements are used in the circumferential direction and 12 elements in the
axial direction. A convergence analysis confirmed that this mesh is sufficiently dense in the frequency range of interest.

3.3. Tyre sidewall submodel

The tyre sidewalls are approximated by distributed spring–damper systems in radial, tangential and axial direction.
The sidewall stiffness is composed of a structural contribution and a pressurized membrane contribution. The
structural contribution originates from the bending, shear and tensile stiffness of the sidewall. The pressurized
membrane contribution originates from the fact that during a deflection of the sidewall, work is done against the inflation
pressure [18].

The elastic foundation is distributed along the circumference at both edges of the treadband ring. The sidewall springs
have a fixed direction such that they only oppose displacements in their respective direction. Consequently, the radial
springs do not rotate together with the treadband ring. An experimental modal analysis on an unloaded tyre, clamped at
the spindle, shows that the first four resonances behave like a spring–mass system in which the sidewall acts as a spring
and the treadband as a mass [32]. Therefore, the tyre behaviour can be approximated as a ring on an elastic foundation and
Eqs. (19), (21) and (22) can be used to calculate the sidewall stiffness from the undamped natural frequency of the
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Table 4
Experimental tyre modal parameters of torsional, (1,0) and axial mode.

Tyre mode Experimental modal test

Freq. (Hz) Mod. damping (%)

Axial 47.20 1.87

Torsion 74.25 6.39

(1,0) 91.26 4.49

Table 5
Sidewall stiffness and damping constants (values per unit of ring area).

Parameter Description Value

k3 Radial sidewall stiffness 9:0� 106 N m�3

c3 Radial sidewall viscous damping 885 N s m�3

ky Tangential sidewall stiffness 4:47� 106 N m�3

cy Tangential sidewall viscous damping 1222 N s m�3

ka Axial sidewall stiffness 1:80� 106 N m�3

ca Axial sidewall viscous damping 227 N s m�3

+1

-1

0

pressure

Fig. 5. Acoustic pressure distribution inside the tyre air cavity at resonance: (a) first acoustic cavity mode and (b) second acoustic cavity mode.
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torsional, (1,0) and axial mode, respectively. Table 4 lists the measured resonance frequency and modal damping—

expressed as a fraction of the critical damping—of the torsional, (1,0) and axial mode. This modal test can be performed
relatively fast and only two tri-axial accelerometers are required to make a distinction between the different modes. From
these modal parameters, the distributed linear spring constant k and viscous damping constant c of the sidewall can be
calculated using Eq. (25). This equation describes the relation between the undamped natural frequency o, damped natural
frequency O and damping ratio x for a single degree of freedom system. k, c and m are the stiffness, damping and mass of
the single degree of freedom system, respectively:

O ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q� �
o with x ¼

c

2
ffiffiffiffiffiffiffi
km
p and o ¼

ffiffiffiffiffi
k

m

r
(25)

The calculated sidewall spring and damping constants are shown in Table 5 and are calculated per unit area of the
treadband ring.

The calculation of the radial sidewall stiffness is based on Eq. (21), which is valid when k3 ¼ ky. Although this
assumption is not satisfied here, the difference on the radial stiffnesses, calculated with Eqs. (20) and (21) is found to be 0.4
percent for the presented tyre. This demonstrates the validity of Eq. (21) for the calculation of the tyre sidewall stiffness.

The above presented sidewall model is based on the assumption that the dynamic behaviour of the sidewall can be
described by means of a spring–damper system. This simplifies the parametrization of the tyre model significantly.
However, it limits the model to the prediction of the ðn;0Þ and ðn;1Þ modes (Fig. 2). For the cross-sectional bending modes
of higher order ða � 2Þ, the sidewall dynamic behaviour deviates too much from a spring–damper system. Unlike the real
tyre sidewall, the presented simplified sidewall model has no mass. Therefore, half of the sidewall mass is assigned to both
the treadband ring and the wheel rim.
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Fig. 6. Cross-section of the tyre air cavity acoustic mesh.
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Fig. 7. Fully assembled tyre–wheel model (cavity mesh is not shown).
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3.4. Air cavity submodel

The tyre structural behaviour is significantly affected by the presence of the inner air cavity [33]. Fig. 5 shows the
acoustic pressure distribution inside the tyre air cavity at the first and second acoustic cavity resonance. The first cavity
resonance for an unloaded tyre appears in the frequency range between 200 and 250 Hz. The air cavity acoustic resonances
also appear as distinct narrow peaks in the spectrum of the vehicle interior noise [11]. Therefore, the structural–acoustic
coupling between tyre and air cavity is included in the presented tyre model.

The air cavity is discretized using 8-node linear brick acoustic elements and is coupled to the structural mesh of the
wheel and treadband ring. The sidewalls of the cavity are considered to be acoustically rigid. Fig. 6 shows a cross-section of
the acoustic mesh, which has 90 acoustic elements in the circumferential direction. The values of the bulk modulus and the
density of air are taken to be 450 kPa and 3:818 kg m�3, respectively, and represent the properties of air at a temperature of
20 �C and a relative pressure of 2:2� 105 Pa. The cavity model does not include a damping definition. Typically, the loss
factor for the air in the tyre is a factor 100 smaller than the loss factor of the tyre tread [34].

3.5. Tyre–wheel assembly

Fig. 7 shows the fully assembled tyre model. For clarity, the cavity mesh is not depicted. First, a static analysis of the tyre
inflation is performed. The wheel centre is clamped and the tyre is inflated to 2:2� 105 Pa in a geometric nonlinear
analysis. The inflation pressure is applied to the rim outer surface and the treadband ring inner surface. This pressure
loading induces a circumferential pretension in the ring which significantly contributes to the tyre stiffness (see Section 2).
Besides the circumferential tension, the tyre treadband is also subjected to an axial tension. This tension is not induced by
the inflation pressure in the model and therefore this tension will be applied as an external loading. The calculation of the
axial tension is based on a model in which the sidewall is represented as an inextensible membrane with circular section
[35]. Fig. 8 shows a schematic representation of the half tyre cross-section. The static horizontal equilibrium of the half
treadband gives

Nr
yy � Ts sinðys=2Þ ¼ 0 (26)

where Nr
yy represents the axial tensile force of the ring per unit circumferential length. ys is the angle of the circular section

with radius Rs that represents the sidewall. The static horizontal equilibrium of the sidewall yields an expression for the
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Fig. 9. Test set-up for the experimental modal analysis on the unloaded tyre.
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Fig. 8. Schematic representation of half tyre cross-section: (a) geometry and (b) sidewall tension Ts and axial ring tension Nr
yy .
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sidewall tensile force Ts per unit circumferential length:

Ts ¼
phs

2 sinðys=2Þ
(27)

where hs and p are the sidewall height and the tyre inflation pressure, respectively. Substitution of Eq. (27) into (26) yields

Nr
yy ¼

phs

2
(28)

For a tyre sidewall height of 0.075 m and an inflation pressure of 2:2� 105 Pa, the axial tensile force Nr
yy becomes

8250 N m�1.

4. Results and validation

The presented tyre model will be validated by comparing measured and calculated frequency response functions (FRFs)
and modal parameters. The response calculations in this section assume the tyre to be linear. Once the tyre is inflated, this
is a valid assumption within a wide range of excitations [29].

4.1. Complex eigenvalue analysis

After the static analysis in which the tyre is inflated, an eigenvalue analysis is performed in which the first 80 undamped
eigenvalues of the tyre model are calculated. This analysis is followed by a complex eigenvalue extraction, based on the



ARTICLE IN PRESS

Table 6
Comparison between measured and calculated modal parameters.

Mode Test Model

Freq. (Hz) Damping (%) Freq. (Hz) Damping (%)

Axial� 47.2 1.87 47.5 1.51

(1,1) 56.9 2.14 53.1 1.42

Torsion� 74.3 6.39 74.0 6.05

(2,1) 89.4 2.07 85.6 1.95

(1,0)� 91.3 4.49 91.2 3.48

(2,0) 118.5 3.26 114.8 3.08

(3,0) 142.0 2.78 137.7 2.79

(4,0) 170.0 3.01 165.9 3.11

(3,1) 171.9 2.73 169.8 4.33

1st rim bending 187.2 2.12 184.2 3.36

Rim pitch 189.9 0.69 189.3 1.47

(5,0) 201.8 2.41 201.3 3.96

(4,1) 222.9 3.57 223.0 5.45

1st acoustic 225.8 0.25 228.0 0.89

(6,0) 233.8 2.82 244.5 5.34

(5,1) 252.6 4.13 267.9 6.73

(7,0) 268.9 2.98 295.7 7.26

�Indicates a mode that is used in the parameterization of the model.
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Lanczos subspace projection method [36]. This method is an iterative Krylov subspace method. The real eigenvectors of the
undamped eigenvalue analysis are used to define the projection subspace. Stiffness and damping properties cannot be
modified during an eigenvalue calculation, thus the frequency dependent material properties have to be evaluated at a
specific frequency. In this model, the complex Young’s modulus is constant for all frequencies; therefore, the solution will
not depend on the evaluation frequency.

An experimental modal analysis is performed on the unloaded tyre–wheel assembly. The wheel is clamped at a spindle
(Fig. 9) which can be considered rigid in the frequency range of interest. Thus, the boundary condition of the simulation is
well approximated in the measurement. The tyre is excited by an electrodynamic shaker (Brüel and Kjaer 4809), connected
to the tyre surface through a stinger and a 10 mm diameter metal disk which is glued to the tyre tread surface. The
excitation force and acceleration in the excitation point are measured by an impedance sensor (PCB 288D01). A burst
random signal, with frequency range of 0–1024 Hz and burst time of 80 percent of the excitation period, is amplified and
delivered to the shaker. In order to excite all tyre modes in the frequency range of interest, the shaker is aligned such that
excitation is provided in radial, tangential and axial direction. Tri-axial accelerometers (PCB 356A15) are used to measure
the response of points on the treadband and wheel.

Comparison of the calculated damped natural frequencies with the measured natural frequencies shows that the
calculated natural frequencies are underestimated. This is a result of the parametrization of the tyre sidewall (Section 3.3)
in which the flexibility of the wheel and the acoustic coupling are not taken into account. Therefore, the sidewall stiffness
values have to be increased in order to obtain the correct natural frequencies for the torsional, (1,0) and axial mode. First,
the axial and tangential sidewall stiffness values have to be updated separately, based on the natural frequency of the axial
and torsional mode, respectively. The axial mode is predominantly influenced by the axial sidewall stiffness, whereas for
the torsional mode it is the tangential sidewall stiffness. Finally, the radial stiffness has to be updated, based on the natural
frequency of the (1,0) mode. This natural frequency is mainly dependent on the tangential and radial stiffness; however,
only the radial stiffness has to be updated because the tangential stiffness has already been updated, based on the torsional
mode. In this way, the three sidewall stiffness values can be updated independently. For the model of the smooth tyre, the
axial, tangential and radial stiffness calculated by the analytical model has to be increased by 13, 4.5 and 34 percent,
respectively, in order to obtain the measured natural frequency for the torsional, (1,0) and axial mode. If the wheel
flexibility and the acoustic coupling are included in the analytical model, no corrections on the calculated stiffnesses would
be required.

Table 6 gives a comparison between the measured and calculated modal parameters up to 300 Hz. The eigenfrequency
predictions are within five percent, except for the (1,1) mode (error �6:9 percent), the (5,1) mode (error þ6:1 percent)
and the (7,0) mode (error þ9:9 percent). The increasing error on the last two modes is caused by the cross-sectional
bending modes of higher order ða41Þ which start to appear between 300 and 350 Hz. The presented model cannot
describe those modes correctly as the sidewall dynamic behaviour of those modes deviates too much from a
spring–damper system.

Fig. 10 compares some of the measured mode shapes with calculated mode shapes of the model. The air cavity is not
shown because no acoustic pressure measurements in the cavity were performed during the experimental modal test. The
calculated and measured mode shapes show good agreement. All calculated modes were identified in the modal test and
vice versa. Most poles are found to be double as the unloaded tyre is axisymmetric.
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(1,0) mode (1,1) mode

53.1Hz56.9Hz91.2Hz91.3Hz

(2,0) mode (3,0) mode

118.5Hz 114.8Hz 142.0Hz 137.7 Hz

(4,1) mode(5,0) mode

201.8Hz 201.3Hz 222.9Hz 223.0Hz

Fig. 10. Comparison between measured (a) and calculated (b) mode shapes.
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4.2. Steady-state harmonic analysis

This analysis calculates the steady-state linearized response of the tyre–wheel model to a harmonic excitation at the
treadband. The response is calculated up to 300 Hz. Rather than a direct calculation, in which the response is calculated in
terms of the physical degrees of freedom of the model using the mass, damping and stiffness matrices, a subspace-based
method is used here to calculate the harmonic response. This approach is computationally less expensive than a direct
calculation and is still able to include frequency-dependent material properties. Fig. 11 compares the measured and
calculated inertance frequency response function of the radial, tangential and axial response due to a harmonic force. The
position of the excitation force and the response point is indicated next to the graphs. The differences between measured
and calculated FRFs are acceptable. The largest errors appear around anti-resonances, as the response is there most
sensitive to position errors of the accelerometers. Both the measured and calculated FRF of the tangential response show a
distinct peak around 225 Hz, which corresponds to the first air cavity resonance.

Fig. 12 compares the measured and calculated point mobility FRF. Besides a frequency shift on certain modes, the
agreement is good. The measurement of a tyre point mobility is highly sensitive to mass loading, rotational inertia, moment
excitation and constraints on displacement due to the impedance sensor which is mounted on the tyre surface. Therefore,
the measured mobility should be compensated [37] or the sensor mounting effects should be modelled, in order to be able
to compare measured and calculated mobility. However, both methods require additional measurements to characterise
the sensor mounting effects. Therefore, the measured mobility of Fig. 12 was obtained by hammer excitation, combined
with a contactless response measurement by a laser Doppler vibrometer. The most important drawback of this approach is
the high uncertainty on the hammer excitation direction.

4.3. Influence of wheel and air cavity

The above presented results show that the tyre–wheel model describes the dynamic behaviour up to 300 Hz with
acceptable accuracy. The nature of this model makes it less suited to assess the influence of detailed tyre parameter
changes onto the tyre structural response. Nevertheless, all model parameters have a physical meaning and can be linked to
tyre design parameters. This section analyses the influence of the wheel flexibility and the air cavity on the structural
behaviour.
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Fig. 11. Magnitude and phase of inertance FRF. Measured (solid) and calculated (dashed).
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Table 7 lists the influence of two hypothetical assumptions on the predicted resonance frequencies of the model. The
first assumption is an infinitely rigid wheel and the second assumption is a tyre in which the air cavity has no dynamic
behaviour. From both experimental as calculated mode shapes, a coupling between certain modes can be observed.
A strong coupling is observed between the (2,1) mode and the first rim bending mode (Fig. 13). This coupling explains the
strong influence of the wheel stiffness onto the (2,1) resonance frequency. A similar coupling effect is present between the
(1,1) mode and the rim pitch mode. Table 7 shows that the ðn;1Þ modes are more influenced by the wheel stiffness
compared to their corresponding ðn;0Þ mode. Fig. 14 shows the point mobility of a model with a flexible and rigid wheel.
This figure shows almost no influence of the wheel flexibility in the frequency region where the wheel modes appear
(180–190 Hz). However, the influence below 150 Hz is significant due to tyre modes that couple with the wheel modes. The
predicted influences of the wheel flexibility correspond exactly with the findings from Wheeler et al. [27], who performed
an experimental modal analysis on a tyre with a standard steel wheel and a stiffened steel wheel.

Fig. 15 compares the point mobility of the model with and without air cavity. The dynamic behaviour of the air cavity
has a much smaller influence on the point mobility as compared to the wheel dynamic behaviour. Table 7 shows that only
the (1,0) and rim pitch resonance frequency are significantly affected by the air cavity. Those two modes are found to have
the strongest coupling with the first acoustic cavity resonance. Fig. 16 shows the acoustic pressure distribution at the (1,0)
and rim pitch resonance. This pressure distribution clearly corresponds to the pressure distribution at the first cavity
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Table 7
Influence of wheel flexibility and air cavity on the calculated resonance frequencies.

Mode Original model Rigid wheel No air cavity

Freq. (Hz) Deviation (%) Deviation (%)

Axial 47.5 þ5:3 0.0

(1,1) 53.1 þ13:0 0.0

Torsion 74.0 þ1:4 0.0

(2,1) 85.6 þ30:3 þ0:2

(1,0) 91.2 þ3:7 þ3:4

(2,0) 114.8 þ2:2 þ1:2

(3,0) 137.7 þ1:2 þ1:0

(4,0) 165.9 þ0:6 þ0:7

(3,1) 169.8 þ4:4 þ0:3

1st rim bending 184.2 � þ0:7

Rim pitch 189.3 � þ2:0

(5,0) 201.3 þ0:2 þ0:6

(4,1) 223.0 þ1:9 þ0:4

1st acoustic 228.0 �1.4 �

(6,0) 244.5 þ0:1 þ0:5

(5,1) 267.9 þ1:0 þ0:4

(7,0) 295.7 þ0:1 þ0:4

�Indicates a mode that is not predicted by the model.
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Fig. 13. Coupling between (2,1) mode and first wheel bending mode (measured (a) and calculated (b) mode shape).
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resonance (Fig. 5). Although the air cavity geometry is simplified and the coupling with the tyre sidewalls is neglected in
this model, the same conclusions are found from detailed tyre finite element models [27].

5. Conclusions

This paper describes a physically based structural tyre model for the analysis of the tyre dynamic behaviour up to
300 Hz. The model describes all modes that appear in this frequency range, unlike most ring models that are limited to
in-plane modes. The main assumption is that the dynamic behaviour of a tyre in this frequency range can be approximated
by a flexible three-dimensional ring on an elastic foundation. The model is implemented as a finite element model.
The fully assembled tyre model includes a wheel and air cavity model, which is necessary to describe all physical
phenomena below 300 Hz. It has been shown in this paper that the wheel flexibility has a significant influence on the
lowest tyre modes. Therefore, a detailed wheel model is needed to obtain the required accuracy of the fully assembled
model.

The parametrization of the model is based on simple geometrical properties of the tyre and the experimental
modal parameters of three tyre modes. Despite the drastic, well considered simplifications, comparison between
measured and calculated responses shows that the tyre–wheel model describes the dynamic behaviour with acceptable
accuracy.

Because the model is physical, it can also be applied to predict the dynamic behaviour under different operating
conditions, such as loading and rotation. However, a more detailed description of the treadband and a nonlinear sidewall
stiffness formulation might be considered in this case. A next step in the ongoing research is to implement those
applications of the tyre model.
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Appendix A. Circumferential tension in ring due to internal pressure

This appendix derives an expression for the circumferential pretension in the ring due to the internal pressure on the
ring. Consider an elementary ring fragment composed of the angle dy (see Fig. A1). The static equilibrium of the ring
fragment can be written as

Fr
3 � 2 sinðdy=2ÞNr

yy ¼ 0 (A.1)

Nr
yy represents the pretension force resultant in the ring per unit width of the ring. Because the angle dy is small, the term

sinðdy=2Þ can be approximated by dy=2. When the ring is subjected to an internal pressure p and a rotation with constant
angular velocity O, the force resultant Fr

3 becomes

Fr
3 ¼ pðR dyÞ þ ðrhR dyÞRO2

� k3ðR dyÞu3 (A.2)

The first, second and third term represent the force resultant due to the internal pressure, centrifugal acceleration and
deformation of the radial springs, respectively. By assuming that the pretension is constant through the shell thickness, the
static radial displacement u3 can be approximated by

u3 � Nr
yyR=ðhEÞ (A.3)
R

h

dθ

ring width b

Nr
θθ

Nr
θθ

Fr
3

dθ/2

Fig. A1. Static force equilibrium of an elementary ring fragment.
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Substituting Eqs. (A.2) and (A.3) into Eq. (A.1) yields

Nr
yy �

pRþ rR2hO2

1þ k3R2=ðhEÞ
(A.4)

For a non-rotating ring, Eq. (A.4) simplifies to

Nr
yy �

pR

1þ k3R2=ðhEÞ
(A.5)

Poisson’s constant is assumed to be zero in the above derived expression. This assumption is justified for the application
presented in this paper, since the difference between the exact and the approximated pretension is found to be 2.4 percent.
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